Overblog
Edit post Seguir este blog Administration + Create my blog
18 diciembre 2014 4 18 /12 /diciembre /2014 18:46

This illustration portrays possible ways methane might be added to Mars' atmosphere (sources) and removed from the atmosphere (sinks). NASA's Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere.

(***)

.

NASA's Mars rover Curiosity drilled into this rock target, "Cumberland," during the 279th Martian day, or sol, of the rover's work on Mars (May 19, 2013) and collected a powdered sample of material from the rock's interior.

.

Curiosity Confirms Organics On Mars | Chemical ...

cen.acs.org/.../Curiosity-Confirms-Organics-Mars.ht..

.

Confirmed the presence of organic compounds in the soil of Mars by NASA on the AGU Fall Meeting in San Francisco

.

Confirmada la presencia de compuestos orgánicos en el suelo de Marte

La NASA confirmó por primera vez este diciembre de 2014 que en el suelo marciano hay compuestos orgánicos. Se trata de clorobenceno y otras moléculas con carbono y cloro, según ha detectado el vehículo Curiosity taladrando en la superficie del planeta rojo. Las sustancias están libres de contaminación terrestre y parece que no las ha generado el propiro rover: son realmente marcianas. Ahora habrá que investigar si su origen es volcánico, hidrotermal, atmosférico, meteorítico o biológico.
La confirmación es el 2° gran anuncio en el AGU Fall Meeting de San Francisco

SINC | | 16 diciembre 2014

.

A los pocos minutos de hacerse público los misteriosos cambios del metano en Marte, los responsables de la misión Mars Science Laboratory (MSL) de la NASA han anunciado este martes en el congreso AGU Fall Meeting de San Francisco (EE UU) probablemente “un dato que estará en los libros de historia”, la polémica frase que anticipó John Grotzinger, científico del proyecto, hace dos años.

El equipo informa de la detección de compuestos orgánicos, concretamente clorobenceno y varios dicloroalcanos (moléculas con átomos de carbono y cloro), en una roca analizada mediante el instrumento SAM (Sample Analysis at Mars) del rover.

 

 

Se ha descartado que se trate de material orgánico por contaminación de algún instrumento en la Tierra

El escenario ha sido un lugar denominado Sheepbed, uno de los puntos a lo largo del recorrido del rover Curiosity por la cuenca del cráter Gale. Las muestras se han tomado del suelo con el taladro que lleva el vehículo y el material analizado son lodolitas (o limolitas), un tipo de roca sedimentaria con minerales arcillosos. Los científicos creen que el cráter fue un lago hace miles de millones de años y que estas lodolitas se formaron a partir de los sedimentos del lago.

El instrumento SAM ha realizado casi una veintena de medidas sobre tres diferentes muestras y ha encontrado el clorobenceno en cantidades que oscilan entre 150 y 300 ppbm (partes por mil millones en masa), además de varios dicloroalcanos, como dicloroetano, dicloropropano y diclorobutano, en menor cantidad.

El origen de estos compuestos orgánicos puede estar en procesos volcánicos, hidrotermales, atmosféricos o biológicos ocurridos en Marte, o bien pueden haber llegado al planeta rojo en meteoritos, cometas o partículas de polvo cósmico. Los investigadores han descartado que se trate de material orgánico procedente de algún instrumento contaminado en la Tierra antes de partir el rover.

.

El estudio se publicará pronto en una revista científica

Todos los detalles se publicarán a partir de enero en el Journal of Geophysical Researh(JGR)-Planets. En cualquier caso, según los investigadores, el hallazgo supone un importante progreso en la valoración del potencial de habitabilidad pasada o presente de la superficie de Marte, uno de los principales objetivos de Curiosity y la misión MSL.

"Creemos que la vida comenzó en la Tierra hace unos 3,8 mil millones de años, y nuestros resultados muestran que zonas de Marte tuvieron las mismas condiciones en ese momento –agua líquida, un ambiente cálido y materia orgánica", explica Caroline Freissinet, del Centro de Vuelo Espacial Goddard de la NASA, y autora principal del artículo. "Si la vida surgió en la Tierra en aquellas condiciones, ¿por qué no también en Marte?".

El equipo del MSL se ha esforzado en confirmar que las sustancias orgánicas encontradas son realmente marcianas. En 1976, las sondas Viking de la NASA ya detectaron dos hidrocarburos clorados (clorometano y diclorometano) después de calentar muestras de suelo de Marte. Sin embargo, no fueron capaces de descartar que se hubieran obtenido a partir de las emisiones del propio instrumento, según reconocieron los responsables de aquella misión.

Los compuestos detectados podrían originarse tras reaccionar las moléculas orgánicas de la roca marciana con los abundantes percloratos

Ahora, algunas fuentes internas del instrumento SAM también pueden producir hidrocarburos clorados durante sus operaciones, pero en cantidades inferiores a 22 ppbm, muy por debajo de las concentraciones detectadas en las lodolitas. Esto ofrece seguridad al equipo para afirmar que las moléculas orgánicas analizadas están presentes de verdad en Marte, o al menos sustancias orgánicas precursoras.

Una de las hipótesis de los investigadores es que en rocas como la analizada se encuentran estas moléculas precursoras, que se pueden haber unido a los abundantes percloratos (contienen cloro y oxígeno) de la superficie marciana. Según se calentó la muestra, el cloro de perclorato se combinó con partes de las moléculas orgánicas de la roca y se produjeron los compuestos que ha identificado SAM.

La primera evidencia de los niveles elevados de clorobenceno y dicloroalcanos los encontró Curiosity en el sol o día marciano 290 (30 de mayo de 2013), en un tercer análisis de la muestra que bautizaron como Cumberland. El equipo pasó más de un año analizando cuidadosamente el resultado, incluyendo la realización de experimentos de laboratorio en la Tierra con instrumentos y métodos similares a los de SAM, para asegurarse de que este instrumento no pudiera estar originando la cantidad de material orgánico detectado.

“En el momento en que vimos por primera vez la evidencia de estas moléculas orgánicas en la muestra Cumberland era incierto si se derivaban o no de Marte; sin embargo, al ver que en otras perforaciones no se producían los mismos compuestos –como se podría pensar si hubiera contaminación por el instrumento–, nos indicaba que el carbono de esas moléculas orgánicas es muy probablemente de origen marciano", subraya Grotzinger, que añade: "Sólo mediante la perforación de más muestras de roca en diferentes lugares, con diferentes historias geológicas, seremos capaces de desentrañar este resultado”.

El concienzudo análisis de muestras de SAM

Investigadores del Grupo de Ciencias Planetarias y Habitabilidad del Instituto Andaluz de Ciencias de la Tierra (UGR-CSIC) han participado en el estudio que se publicará a partir del próximo enero en el Journal of Geophysical Researh(JGR)-Planets. Desde esta institución se asegura que la detección de compuestos orgánicos en el suelo del cráter Gale es inequívoca, como confirmará el paper, y ofrece algunos detalles del minucioso trabajo que se ha llevado a cabo con el Sample Analysis at Mars (SAM).

.

sam_exposed_annotated_mahaffy

Los tres instrumentos del Sample Analysis at Mars (SAM). / NASA

El instrumento ha analizado con tres aparatos los compuestos volátiles procedentes de muestras sólidas a través de varios métodos: un análisis directo de gases, un proceso de combustión (se examina los productos obtenidos tras el calentamiento de la muestra en presencia de oxígeno puro) y un proceso de química húmeda, en el que los compuestos contenidos en la mezcla reaccionan con una sustancia conocida para ser caracterizados mediante el análisis de los productos resultantes.

A lo largo de todos estos procesos se pueden producir reacciones indeseadas, cuyos productos invaliden las mediciones obtenidas, por lo que ha sido necesario determinar previamente todas las posibles interferencias para asegurar la exactitud de los resultados. De hecho, el artículo explicará todos los experimentos, procedimientos, medidas preventivas y precauciones tenidos en cuenta para garantizar la correcta interpretación de los datos conseguidos.

Las autores aseguran que la cantidad de clorobenceno observada está desacoplada de cualquier contaminación terrestre, porque los residuos de carbono en SAM fueron reduciéndose en los sucesivos análisis realizados sin ninguna influencia en sus resultados. Incluso han descartado que las sustancias que se emitieron por los daños en una de las cápsulas del aparato puedan haber afectado de alguna manera a los datos.

La investigación señala que las sustancias orgánicas detectadas se pueden considerar definitivamente como productos del carbono contenido en las limolitas o lodolitas analizadas. En conclusión, el estudio establece que hay carbono orgánico propio del suelo marciano, cualquiera que sea su origen último.

 
Fuente: AGU Fall Meeting/ Instituto Andaluz de Ciencias de la Tierra

 

.

NASA's Mars rover Curiosity drilled into this rock target, "Cumberland," during the 279th Martian day, or sol, of the rover's work on Mars (May 19, 2013) and collected a powdered sample of material from the rock's interior.

 

NASA's Mars rover Curiosity drilled into this rock target, "Cumberland," during the 279th Martian day, or sol, of the rover's work on Mars (May 19, 2013) and collected a powdered sample of material from the rock's interior. Analysis of the Cumberland sample using laboratory instruments inside Curiosity will check results from "John Klein," the first rock on Mars from which a sample was ever collected and analyzed. The two rocks have similar appearance and lie about nine feet (2.75 meters) apart.

Curiosity used the Mars Hand Lens Imager (MAHLI) camera on the rover's arm to capture this view of the hole in Cumberland on the same sol as the hole was drilled. The diameter of the hole is about 0.6 inch (1.6 centimeters). The depth of the hole is about 2.6 inches (6.6 centimeters).

Malin Space Science Systems, San Diego, developed, built and operates MAHLI. NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Mars Science Laboratory Project and the mission's Curiosity rover for NASA's Science Mission Directorate in Washington. The rover was designed and assembled at JPL, a division of the California Institute of Technology in Pasadena.

For more about NASA's Curiosity mission, visit: http://www.jpl.nasa.gov/msl, http://www.nasa.gov/mars, and http://mars.jpl.nasa.gov/msl.

View all Images

 

By measuring absorption of light at specific wavelengths, Tunable Laser Spectrometer (TLS) onboard NASA's Curiosity measures concentrations of methane, carbon dioxide and water vapor in Mars' atmosphere.

 

 

This graphic shows key features of the Tunable Laser Spectrometer (TLS), one of the instruments within the laboratory suite named Sample Analysis at Mars (SAM) aboard NASA's Curiosity Mars rover. The upper half of the graphic is a schematic illustration of TLS. The lower half is a photograph of it from before its installation into SAM.

By measuring absorption of light at specific wavelengths, TLS measures concentrations of methane, carbon dioxide and water vapor in the Martian atmosphere. It includes a chamber called a Herriott cell, where a laser beam at a precisely tuned wavelength is reflected between mirrors to bounce back and forth through the sample of gas being analyzed. The laser passes through the sample 81 times, for a total length of 55 feet (16.8 meters), which makes the absorption easier to measure than would otherwise be possible with such a compact instrument.

The TLS technology from Curiosity is being tested for use on Earth as utility-company safety equipment to check for leaks in pipelines carrying natural gas. Methane is a major component of natural gas.

NASA's Mars Science Laboratory Project is using Curiosity in Mars' Gale Crater to assess ancient habitable environments and major changes in Martian environmental conditions. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. JPL developed and built the TLS. NASA's Goddard Space Flight Center, Greenbelt, Maryland, built and operates SAM.

More information about Curiosity is online at http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/.

.

This illustration portrays some of the reasons why finding organic chemicals on Mars is challenging. Whatever organic chemicals may be produced on Mars or delivered to Mars face several possible modes of being transformed or destroyed.

 

This illustration portrays some of the reasons why finding organic chemicals on Mars is challenging. Whatever organic chemicals may be produced on Mars or delivered to Mars face several possible modes of being transformed or destroyed.

Organic chemicals are molecular building block of life, although they can be made without the presence of life. Whether or not organic chemicals are produced by processes on Mars, some are delivered to the planet aboard meteorites and dust from asteroids and comets.

Cosmic rays that can penetrate rock surfaces can trigger breakdown of organic compounds. So can oxidation reactions induced by ultraviolet light, such as a process called Fenton's reaction, which breaks down organic chemicals in the presence of iron minerals and peroxide. Fenton's reaction is sometimes used for environmental cleanup projects where organic-chemical pollutants are a concern on Earth. Perchlorates in Martian soil and rock may also oxidize organic chemicals, directly converting them to carbon dioxide.

Despite the possible pathways for breakdown of organic chemicals on Mars, NASA's Curiosity Mars rover has definitively detected Martian organics in powder the rover's drill collected from a mudstone target called "Cumberland." That target is close to an eroding scarp, where it had been covered by overlying layers of rock, reducing exposure to cosmic rays, for most of the approximately three billion years since the rock formed.

NASA's Mars Science Laboratory Project is using Curiosity to assess ancient habitable environments and major changes in Martian environmental conditions. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. NASA's Goddard Space Flight Center, Greenbelt, Maryland, built and operates SAM.

 

 

 

 

(***)

This illustration portrays possible ways that methane might be added to Mars' atmosphere (sources) and removed from the atmosphere (sinks). NASA's Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere, implying both types of activity occur in the modern environment of Mars.

A molecule of methane consists of one atom of carbon and four atoms of hydrogen. Methane can be generated by microbes and can also be generated by processes that do not require life, such as reactions between water and olivine (or pyroxene) rock. Ultraviolet radiation (UV) can induce reactions that generate methane from other organic chemicals produced by either biological or non-biological processes, such as comet dust falling on Mars. Methane generated underground in the distant or recent past might be stored within lattice-structured methane hydrates called clathrates, and released by the clathrates at a later time, so that methane being released to the atmosphere today might have formed in the past.

Winds on Mars can quickly distribute methane coming from any individual source, reducing localized concentration of methane. Methane can be removed from the atmosphere by sunlight-induced reactions (photochemistry). These reactions can oxidize the methane, through intermediary chemicals such as formaldehyde and methanol, into carbon dioxide, the predominant ingredient in Mars' atmosphere.

More information about Curiosity is online at http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/.

Compartir este post

Repost0

Comentarios

Présenta

  • : cinabrio blog
  • : Ecología y sostenibilidad socioambiental, énfasis en conservación de ríos y ecosistemas, denuncia de impacto de megaproyectos. Todo esto es indesligable de la política y por ello esta también se observa. Ecology, social and environmental sustainability, emphasis on conservation of rivers and ecosystems, denounces impact of megaprojects. All this is inseparable from politics, for it, the politics is also evaluated.
  • Contacto

Perfil

  • Malcolm Allison H malcolm.mallison@gmail.com
  • Biólogo desde hace más de treinta años, desde la época en que aún los biólogos no eran empleados de los abogados ambientalistas. Actualmente preocupado …alarmado en realidad, por el LESIVO TRATADO DE(DES)INTEGRACIÓN ENERGÉTICA CON BRASIL
  • Biólogo desde hace más de treinta años, desde la época en que aún los biólogos no eran empleados de los abogados ambientalistas. Actualmente preocupado …alarmado en realidad, por el LESIVO TRATADO DE(DES)INTEGRACIÓN ENERGÉTICA CON BRASIL

Recherche

Liens